Package: rMIDAS 0.5.0
rMIDAS: Multiple Imputation with Denoising Autoencoders
A tool for multiply imputing missing data using 'MIDAS', a deep learning method based on denoising autoencoder neural networks. This algorithm offers significant accuracy and efficiency advantages over other multiple imputation strategies, particularly when applied to large datasets with complex features. Alongside interfacing with 'Python' to run the core algorithm, this package contains functions for processing data before and after model training, running imputation model diagnostics, generating multiple completed datasets, and estimating regression models on these datasets.
Authors:
rMIDAS_0.5.0.tar.gz
rMIDAS_0.5.0.zip(r-4.5)rMIDAS_0.5.0.zip(r-4.4)rMIDAS_0.5.0.zip(r-4.3)
rMIDAS_0.5.0.tgz(r-4.4-any)rMIDAS_0.5.0.tgz(r-4.3-any)
rMIDAS_0.5.0.tar.gz(r-4.5-noble)rMIDAS_0.5.0.tar.gz(r-4.4-noble)
rMIDAS_0.5.0.tgz(r-4.4-emscripten)rMIDAS_0.5.0.tgz(r-4.3-emscripten)
rMIDAS.pdf |rMIDAS.html✨
rMIDAS/json (API)
NEWS
# Install 'rMIDAS' in R: |
install.packages('rMIDAS', repos = c('https://midasverse.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/midasverse/rmidas/issues
deep-learningimputation-methodsneural-networkreticulatetensorflow
Last updated 1 years agofrom:a53fddfed2. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:add_bin_labelsadd_missingnesscol_minmaxcombinecompleteconvertdelete_rMIDAS_envmidas_setupna_to_nanoverimputereset_rMIDAS_envset_python_envtrainundo_minmax
Dependencies:data.tableherejsonlitelatticeMatrixmltoolspngrappdirsRcppRcppTOMLreticulaterlangrprojrootwithr
Imputing missing data using rMIDAS
Rendered fromimputation_demo.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2023-08-16
Started: 2020-11-02
Running rMIDAS on a server instance
Rendered fromuse-server.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2023-06-13
Started: 2022-06-25
Using custom Python versions
Rendered fromcustom_python_versions.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2023-08-16
Started: 2020-11-02